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Received 16 June 1999

Abstract. Methods ofp-adic analysis are applied to the investigation of spontaneous symmetry
breaking in the models of spin glasses.pAfadic expression for the Parisi replica matrix is given
and, moreover, the Parisi replica matrix in models of spontaneous breaking of the replica symmetry
in the simplest case is expressed in the form of the Vladimirov operatgradfic fractional
differentiation. Also, the model of hierarchical diffusion (that was proposed to describe relaxation
of spin glasses) is investigated usipgadic analysis.

1. Introduction

Numerous works, for example [1-3], discuss the application of ultrametrics to the investigation
of spin glasses. The mostimportant example of ultrametric space is the fieladit numbers,

for anintroduction tg-adic analysis, see [4p-adic mathematical physics attracts a great deal
of interest, see [4—6]. For instangeadic models in string theory were introduced, see [7, 8],
and p-adic quantum mechanics [9] apdadic quantum gravity [10] were investigated. In the
present paper we apply the methodgeadfdic analysis to investigate the spontaneous symmetry
breaking in the models of spin glasses. We obtain the following results:

(1) A p-adic expression for the replica matr@,, is found. It has the fornQ,, = ¢,
wherek = log, |/(a) — I(b)|,: the notation is expressed below. It is shown that the
replica matrix in the Parisi form [1] in the models of spontaneous breaking of the replica
symmetry in the simplest case has the form of the Vladimirov operafoaafic fractional
differentiation [4].

(2) The model of hierarchical diffusion that was used in [11] to describe relaxation of spin
glasses in our approach takes the form of the modgladlic diffusion. For instance, we
reproduce the results of [11] using the methodg-@ldic analysis.

The results of the present paper were partially presented in [12]. After completion of this
work we received a paper by G Parisi and N Sourlas [13] where similar results are derived (see
the discussion in section 2).

The models of spontaneous breaking of the replica symmetry are used for the investigation
of spin glasses [1-3]. The breaking of symmetry in such models is described by the replica
n x nmatrix@ = (Qg) in the Parisi form [1]. This matrix appears as follows. Let us consider
the set of integer numbers;, i = 1, ..., N, wherem;/m;_, are integers for > 1 andn/m;
are also integers. The matrix element of the replica matrix [1] is defined as follows:

; i i+1 mi+1
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Here [] is the function of integer part (we understand the integer pdrtd be as follows:
[x] — 1 < x < [x] where [x] is the integer) ang; are some (real) parameters. An example of
a matrix of this kind forn; /m;_1 = 2 andn = 2V has the form

0 g1 g2 92 93 g3 g3 q3
g1 0 g2 g2 93 93 q3 g3
92 g2 0 q1 g3 q3 q3 q3
92 g2 91 0 g3 q3 q3 q3 ...
Q=|q3 93 93 3 0 q1 g2 q2 ... |. )
a3 q3 q3 g3 q1 0 q q
a3 q3 q3 q3 q2 q2 0 q1
93 93 93 93 q2 q2 q1 O

In the present paper we discuss the replica matrix (2) (more precisely, the generalization of
this example for the case oY x p™ matrices) using the language pfadic analysis. This
allows one to give the natural interpretation for (2) as the operator that can be diagonalized
by the p-adic Fourier transform. In particular, this gives the spectrum of matrix (2). In the
limit of infinite breaking of the replica symmetly — oo, the dimensiorp? of the replica
matrix tends to infinity, but th@-adic norm of the dimensiop"|, = p~" tends to zero. The
conjecture made by Volovich [14] is that this phenomenon might explain the paradoxical fact
that in the replica method the dimension of the replica matrix in the limit of infinite breaking
of the replica symmetry tends to zero.

Here we give a brief review op-adic analysis. The fiel@, of p-adic numbers is the
completion of the field of rational numbe® with respect to thep-adic norm onQ. This
norm is defined in the following way. An arbitrary rational numbecan be written in the
formx = p” = wherem andn are not divisible byp. The p-adic norm of the rational number
x = p¥isequal tox|, = p~7.

The most interesting property of the field pfadic numbers is ultrametricity. This means
that Q, obeys the strong triangle inequality

lx +yl, < max(|x|,, [y]p)-
We consider discs i@, of the form{x € Q) : |x — x|, < p~ 8. For example, the ring
Z, of integer p-adic numbers is the dise € Q, : |x|, < 1}, which is the completion of

integers with thep-adic norm. The main properties of discs in arbitrary ultrametric space are
as follows:

(1) Every point of a disc is the centre of this disc.
(2) Two discs either do not intersect or one of these discs contains the other.

The p-adic Fourier transforn# of the functionf (x) is defined as follows:

FLA®) = f&) = / X Ex) () de ()

P

where du (x) is the Haar measure. The inverse Fourier transform has the form
Fgl) = / X(—£x)g(&) du (&)
()

Here x (x) = exp(i&x) is the character of the field gf-adic numbers. For example, the
Fourier transform of the indicator functid(x) of the disc of radius one with its centre at
zero (this is a function that equals one on the disc and zero outside the disc) is the function of
the same type:

Q&) = Q).
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In the present paper we use the following Vladimirov oper@pof the fractionalp-adic
differentiation, which is defined [4] as

DY f(x)=F "ol§l, o F[fl(x) =

=y O 0

HereF is the (p-adic) Fourier transform, the second equality holdsfor 0.
For further reading on the subject pfadic analysis, see [4].

2. The replica matrix

Let us describe the model of the replica symmetry breaking using the languagadi€
analysis. We show that the replica maték = (Q,;) can be considered as an operator in
the space of functions on the finite set consisting®fpoints with the structure of the ring
p~NZ/Z. Theringp~"Z/Z can be described as a set with the elements

x:ijpfj 0<x;<p-1

with natural operations of addition and multiplication up to modulus 1. Let us considgr the
adic norm on this ring (the distance can take valugs,0. ., p"). We consider the following
construction and introduce one-to-one correspondence:

l:l,...,pN—>p_NZ/Z

N N
l_l:ijp_jl—)1+p_1ijpj 0<x; <p—-1

ERC

Theorem. The matrix elemen®,,, defined by (4) depends only on th@dic distance between
l(a) andl(b):

Qup = p(|l(a) = 1(D)]p)
wherep (p*) = g, p(0) = 0.

Formula (1) takes the form

a b
Qu =0 Oup = qi [F} #* [F}

Let us prove the following theorem.

Proof. The condition [l%] = [%] expressed in our notation has the form

[1 +p‘127=1aj17’} _ [1 +P‘1Z§V=1bm’}

P p

This means that; = b; for j > i. The condition %] #* [%] means that; # b;.
However, these two conditions both mean théat) — [(b)|, = p~'. The matrix element of
the replica matrixQ,, depends only on the-adic distancel(a) — [(b)|,: if |I(a) — [(D)],
equalsp~ thenQ,;, = ¢ and the statement of the theorem follows.

The replica matrix Q) acts on functions op~" Z/ Z as on vectors with matrix elements
f» whereb =1(y),b =1, ..., pV. The action of the replica matrix in the space of functions
on p~NZ/Z takes the form

Qfx) = / p(lx —ylp) f(y)du () 5)
pNZ/Z
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where the measurad(y) of one point equals one anfd = f (I(b)) (because we can consider
the indexb of the vector as the index of the first column of the magx;)).
Itis easy to see that operators which take the form of (5) have the following properties:

(1) The operators (5) commute with shift operators. This means that the operators (5) can be
diagonalized by the Fourier transform (in our case this is the discrete Fourier transform).

(2) The functiono depends on thg-adic norm of the argument.

(3) p(0) =0.

The language gf-adic analysis allows us to describe the natural generalization of operator
(5). This generalization has the operator form

Qf(x) =/Q p(x = ylp) f(y)du (y) (6)
P

where the functiorp obeys properties (1) and (2) (an analogue of property (3) is considered
later). Here, and in what follows, we stipulate the agreement that we use the same notation
(without special comments) for analogous values in the discrete and the contipuadi)
cases.

In [13] Parisi and Sourlas discuss an analogous construction gf-ttic generalization
of the Parisi matrix connecting it with the famous replica approach lmit 0, wheren is
the dimension of replica matrix. The summation of elements in the line of the Parisi matrix
was performed to get

N
> 0w=) (p-Dp g
b P

One rewrites this as

N 0

dDtp-1p - ) (p-Dp' g 7
and takes the formal limiv — —oo (that corresponds to the limit — O for the dimension
of replica matrixn = p"). The first term in (7) disappears in the limit and the second term
exactly gives the-adic integral [13}-p fmpgl p(x],) du (x), wherep(p*) = g, k < 0.

It is easy to see that the characjgikx) is the generalized eigenvector for the operator

(6), if p(Ix|,) € L*(Q,). Thus, the operator (6) can be diagonalized by kedic Fourier
transformF: Q f(x) = F~1o y (&) o F[f](x). From property (2) it follows that the function
y depends only on thg-adic norm of the argumenyz = y (|§],). Therefore, we get

Qf(x)=F toy(l,) o FLf](x).

3. The model of hierarchical diffusion

We now reproduce (partially) the results of [11] using the methogsadic analysis. In [11]

the relaxation of spin glasses was described using the following model of hierarchical diffusion.

Let us consider? points (we also consider the more general cage opoints, wherep > 0

is prime), separated by energy barriers. The energy barriers have the following form. Let us
enumerate the points by integer numbers starting from @'te-2 (analogously, from 0 to

pN — 1). Let us consider the increasing sequence of energy barriers (non-negative numbers)
0=Ag< A1 <Ay <--- < Ap <---. Wedefine the energy barriers on the sep&fpoints
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according to the following rule: i — b is divisible by p* then the barrier between tlagh
andbth points is equal ta\.

The hierarchical diffusion is described by the ensemble of particles that jump over the
above-described set pf¥ points. Let us define the probabiligy of transition (or jump) over
the energy barrieA; in the following way:gq; = exp(—A;),i =1, 2, .... Then, the transition
probability matrix will be equal (up to additive constant) to matghof the form (2).

We denote the density of particles at thth point asf, (z) and the vector with elements
that are equal to the densities at all pointgé&s. We define the dynamics of the model using
the following differential equation [11]:

d
Ef(t)=(Q—>»oI)f(t) 8

where theN x N matrix Q for p = 2 has the form (2) of the replica matrix for the model of
the replica symmetry breakind, is the unity matrix, and.q is the eigenvalue of the matrix
Q that corresponds to the eigenvector with equal matrix elements. This choice of transition
probability matrix is defined by the law of particle number conservation (that is an analogue
of property (3)).

Application of the technique developed in section 2 allows us to write equation (8) in the
form

d
d—f(x,t) =/ (f. ) = fx,0))p(x — yl,) du (y) 9
! pNZ)Z

wheref,(t) = f((a), t). Forexample, forthe above-considetgd= exp(—A;),i = 1,2, ...
and for the linear dependence of the barrier enetgy = i(1 + «)Inp on i we get
o(lxlp) = |x|[j1*°‘ and equation (9) takes the form

d f(yv t) - (‘x7 t)
S = LR DZ IR0 T G (). 10
dr . 2) ,/;Nz/z lx =yl o) (10)

On the right-hand side (RHS) of equation (10) we get the discretization of the Vladimirov
operatorD? (3), of the fractionap-adic differentiation, see [4].

In [11] the Cauchy problem for the equation (10) with the initial conditfai, 0) = 8,0
was investigated. The time dependence of Bpg) value that in thep-adic notation has the
form

Po(t) = £(0.1) = / 8,0/ (v, 1) die (3)

pNZ/Z
was found. In the present paper we calculate Bp€) value using the method gf-adic
analysis.
The p-adic generalization of equation (9) has the following form:
d
Ef(x, 1= / (f. ) = flx,0)px — ylp) du (). (11)
0,

Let us describe how to get the spectrum of oper&@dan the RHS of (11) (or the spectrum

of relaxation times for the model of hierarchical diffusion [11], describing spin glasses). We
use thep-adic Fourier transform. It is easy to see that the charggater) is the generalized
eigenfunction for the operator in the RHS of (11)if|x],) € Ll(Q,,\Ue), whereU, is

the arbitrary neighbourhood of zero, or equivalentlyif € Z the seriesy .2, [p(p")|p~"
converges. Forinstance, 1 is the eigenfunction for the eigenvalue that equals zero. The proof
is as follows:

Dy (kx) = /Q (x (ky) = x (kx))p(Ix — ylp) due ()
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= x(kx) . (x(k(y = x)) = Dp(x — yl,) du ()

= x(kX)/Q (x(ky) = Dp(lyl,) du ().

To finish the proof we note that (ky) is a locally constant function that equals one in
some neighbourhood of zero. Using the fact that the integvrelgp,. x(ky)du (y) = p,

if |k|, < p~* and equals zero ik|, > p~', we get

1
Dy (kx) = (— L=p™ Y pip) - [;{—,O(Iklp))x(kx} (12)

P'<Iklp Ikl

This relation shows the correspondence between the spectrum of relaxation times and the
elements of the replica matrix in the form (2) (here= p(p')). Relation (12) reproduces the
result obtained in [11], where a more complicated technique was used.

Let us describe how to get the operator in the RHS of equation (9) using the analogous
operator (in the RHS of equation (11)) @n,. Consider the finite-dimensional subspace
Vy C L%(Q,) of the following form. The subspadé, consists of functions with zero average
with support inp~" Z,, that are constants on discs of radius one. Therefore, the dimension
of the subspac#y equalsp” — 1. The operator at (11) maps this space into itself. At the
subspacé/y, the operator in the RHS of equation (11) takes the form

Dfx) = / (f») = fNpdx = ylp)du ()
pNZ/Z

which looks exactly like the operator in the RHS of equation (9). However, using this method
we will not obtain equation (9) because the operator in the RHS of (9) acts in the dimension
space that is larger, by one, th&R. This space can be obtained from the spégdy adding
to Vy the function that equals one on the bafi" Z,, (and zero outside).

Thus, the model presented in [11] (up to the comments made above) corresponds to the
action of the operator gé-adic fractional differentiation at the subspace.

We investigate the following-adic generalization of the model given in [11]. Let us
consider the Cauchy problem for tlpeadic generalization of equation (10):

%f(x,t)+Afo(x,t):0 (13)

that has the form of the equation pfadic diffusion that was investigated in [4]. We take the
initial equation for (13) of the form

f(x,0) =8(x). (14)
This means that we investigate the fundamental solution of equation (13). Fourier transform
equation (13) then takes the form

d - -
af(&t) +AIE[f(§,1) =0.

The solution of this equation i§(¢, 0)e~¥l»'. Because the Fourier transform of théunction
with support in zero equals one, we finally get

f& 1 =eEl
Fla) = fQ X (—Ex)e A (&),

P

(15)
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As the p-adic generalization oPy(¢) we consider the value

Polt) =/| L =/ Q) f(x. 1) di (x)

P

(we use the same notation) that for solution (15) takes the form
| eweidue - |
4 |€|p<1

Our answer coincides with the answer obtained in [11] for (9). The value found in [11] (they
usep = 2) has the form

] 1 Rt n—=1 2_R .
Po(t) = nlL)moo <2" + > exp( > Zexp( —mln2— ——R" 1t>) a7)

e du (6) = (A—p™H Y pre . (16)
k=0

1-R 1-R

m=0

where O< R < 1is some constant. It is easy to see that (16) and (17) coincide ferp—“

andA = fj—g. We see thap-adic analysis allows us to investigate the models of hierarchical

diffusion using the simple and natural formalism.
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